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ABSTRACT: The preparation of new phosphonium alkylidene ruthenium metathesis /\
catalysts containing N-heterocyclic carbenes (NHCs) that result in a preference for T
degenerate metathesis is described. The reaction of the catalysts with ethylene or substrates mes—t. - AAGH=1.7 kealmol
relevant to ring-closing metathesis (RCM) produced ruthenacyclobutanes that could be N
characterized by cryogenic NMR spectroscopy. The rate of a/f3 methylene exchange in
ethylene-only ruthenacycles was found to vary widely between ruthenacycles, in some cases

being as low as 3.97 s~ at —30 °C, suggesting that the NHC plays an important role in M Ak 2
degenerative metathesis reactions. Attempts to generate RCM-relevant ruthenacycles '-’U'J—"'\l/-"‘—"-'f- s \&
resulted in the low-yielding formation of a previously unobserved species, which we assign Cim R’
to be a f-alkyl-substituted ruthenacycle. Kinetic investigations of the RCM-relevant QCL/H
ruthenacycles in the presence of excess ethylene revealed a large increase in the kinetic ;
barrier of the rate-limiting dissociation of the cyclopentene RCM product compared with

previously investigated catalysts. Taken together, these results shed light on the degen-
erate/productive selectivity differences observed for different metathesis catalysts.

B INTRODUCTION Scheme 1. Productive and Degenerate Metathesis of

Olefin metathesis continues to evolve as one of the most Propylene
effective methods for the construction of new carbon—carbon CDs
bonds."* This evolution has been facilitated by the development productive e Hc=CD, + /=r
and intense mechanistic study of the catalysts responsible for this CH4 CDs HsC
transformation.® Accordingly, metathesis has found applications o=/ + pc=/ i o
in a wide range of fields including polymer chemistry,* organic dopwwery. st ket 2

synthesis,® biochemistry, and green chemistry.

Implicit in many olefin metathesis reactions is the presence of
degenerate or nonproductive events. For instance, in the self
cross-metathesis reaction of propylene, a productive reaction
would result in the formation of 2-butene, while a degenerate
reaction would reform propylene. As the degenerate reaction
reproduces the starting olefin, it can be reliably studied only via
isotopic crossover experiments (Scheme 1). Elegant experiments
from a multitude of research groups using early metal catalysts and
selectively labeled olefins have established that degenerate metathesis
occurs approximately an order of magnitude faster than productive
metathesis and appears to be due to a propagating alkylidene
species.” To date, analogous studies have not been performed with
modern, well-defined metathesis catalysts based on ruthenium,
despite the importance of degenerate events to catalyst efficiency.

Our group recently reported a study of degenerate events
taking place during RCM of an isotopically labeled diethyl diallyl-
malonate (1) in which we discovered the surprising effect of
NHC structure on a catalyst's propensity to perform either Received:  August 2, 2011
productive or degenerate turnovers.” The results of this study Published: September 15, 2011

validated the importance of degenerate metathesis events and
their subsequent effect on a catalyst's efficiency and stability.
Furthermore, we also recently established that selectivity for
degenerate metathesis may actually be beneficial in some applica-
tions, such as the ethenolysis of methyl oleate.'® In addition, in the
case of group VI catalysts, degenerate events have been shown to
play a critical role in enantioselective metathesis reactions.""
For ruthenium metathesis catalysts, the effect of ligand structure
on initiation and stability has been well-documented.'”"* This
knowledge has allowed the development of increasingly sophis-
ticated catalysts. However, much less is known about the effect of
ligand structure on processes that occur within a complex cat-
alytic cycle such as RCM. This lack of understanding has made it
difficult to rationalize the behavior of catalysts asked to conduct
increasingly challenging transformations. Recently, the situation
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has been remedied by the development of rapidly initiating
catalysts and their ability to form ruthenacyclobutanes efficiently
at low temperature, which has facilitated the solution-phase
study of previously inaccessible metathesis intermediates by
our group'* as well as Piers and co-workers'>'® (Figure 1). By
analyzing these intermediates and using a combination of kinetics
and kinetic modeling, the Piers laboratory was able to determine
the activation energies for the fundamental steps along the
productive RCM pathway."”

While the above results will undoubtedly facilitate the develop-
ment of more efficient catalysts, we sought to utilize them as a basis
to establish the effect of the NHC on each elementary reaction in
the RCM catalytic cycle. Specifically, we wanted to correlate these
effects with the preference for degenerate selectivity and thereby
acquire a more intimate understanding of the role of the NHC in
establishing the selectivity for either degenerate or productive olefin
metathesis. Herein we report our progress toward this goal.

B RESULTS AND DISCUSSION

In view of our interest in degenerate metathesis, catalysts in-
corporating NHCs known to give lower selectivity for productive
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Figure 1. Previously observed ruthenacycles relevant to RCM.

Scheme 2. Synthesis of Phosphonium Alkylidene Catalyst 9

metathesis in the RCM of 1 were selected for study.” Thus, we
started with previously reported catalyst 5 and performed a
phosphine exchansge in order to expedite the formation of
ruthenacycles.lsc’1 Subsequent reaction with Feist’s ester (7)
yielded carbide 8, which we then protonated with HCl in Et,O to
afford the desired ghosphonium alkylidene complex 9 in good
yield (Scheme 2)."
Similarly, the reaction of the cyclic alkylamino carbene
(CAAC) catalysts of type 10 with 7 in the presence of 1 equiv
of P("Pr); yielded carbides 11 and 12, which were then proto-
nated in a manner analogous to 8 to obtain the desired complexes
13 and 14 (Scheme 3). Notably, this result demonstrates that
phosphonium alkylidene complexes may be obtained from
Hoveyda-type parent complexes in situations where the corre-
sponding phosphine precursor is synthetically inaccessible.
With 9, 13, and 14 in hand, we next attempted the preparation
of ethylene-derived ruthenacycles, as even these simple metalla-
cyles can provide insight into the influence of the NHC ligand.
Gratifyingly, complete conversion to metallacycle 15 was ob-
served after 3 h at —40 °C when 9 was exposed to B(C4Fs )3 and 1
atm ethylene (Scheme 4). Consistent with analogous complexes,
15 displayed an upfield resonance at —2.4 ppm characteristic of
the hydrogen on the f3-carbon of the ruthenacycle. We found
compound 185 to be stable for several days at —78 °C, and it could
be fully characterized by "H NMR spectroscopy and 2D techni-
ques such as "H—"H correlation spectroscopy (COSY) [see the
Supporting Information (SI)].>° A rotational Overhauser effect
spectroscopy (ROESY) spectrum taken at —60 °C (Figure 2)
displayed cross-peaks indicative of chemical exchange between
the protons on the @ and f3 carbons of the ruthenacycle. Curi-
ously, cross-peaks were observed only between a-H and 5-H and
not between a’-H and 3-H. Although interesting, this situation is
not unprecedented and appears to be a result of asymmetry in the
NHC affecting the ruthenacycle.'”® We next attempted to
measure the rate constant for exchange (k;s.5,) between the a
and [ protons using exchange spectroscopy (EXSY). Unfortu-
nately, the presence of a minor peak overlapping with the a-H
resonance in 15 resulted in irreproducible measurements. How-
ever, switching to a magnetization transfer technique allowed us
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Figure 2. (left) Mechanism of ruthenacycle methylene exchange and (right) ROESY spectrum at —60 °C with cross-peaks indicative of chemical

exchange.

Scheme 5. Generation of Ethylene-Only Ruthenacycles from
13 and 14
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Table 1. Ruthenacycle /8 Methylene Exchange Rates for All
Complexes

complex T (°C) exchange rate constants (s
15 —60 10.5
16 —30 3.97
17 —60 1.48

to obtain a kyg.g, value of 10.5 s at —60 °C (see the SI). This
value is in good agreement with previous reports for ruthena-
cycles incorporating 1,3-dimesitylimidazolidine-2-ylidene (H,IMes),
such as 2. An Eyring plot over the temperature range from —40
to —80 °C (Figure S10 in the SI) yielded the values AH' = 10.1 £
0.5 keal mol  and AS* = —5.7 + 22 cal mol ' K.

Similar to the case of 9 above, the reactions of 13 and 14 with
an excess of ethylene under similar conditions cleanly yielded
ruthenacycles 16 and 17 (Scheme $).>* Characterization of 16
was performed according to the procedure described above, but a
ROESY NMR spectrum at —60 °C showed only a nuclear
Overhauser effect (NOE) between the a-H and $-H; no
evidence of chemical exchange was observed. In fact, chemical
exchange via ROESY and magnetization transfer was not ob-
served until the temperature was raised to —30 °C! Measure-
ment of the exchange rate constant via magnetization transfer
yielded an extraordinarily low value of 3.97 s ' at —30 °C
(Table 1). Thus, in comparison with the values for other catalysts
(e.g, 2 and 15), ky¢.gy is lower, even at higher temperatures.
This effect could be observed qualitatively: the ruthenacycle

Scheme 6. Synthesis of Substituted Ruthenacycles from 9,
13, and 14

R_ R
N—Ar 18 N—Ar
Cl = (1 equiv.) Ll
SN CD,Cl, arRy
cl P(Pr)s -78°C
13/14
R R 16/17
©18 I\
Mes—N N-"Bu B(CeFs)s Mes—N N-"Bu Mes—N N-"Bu
Y =— (1 equiv.) Y Y
- «Cl T» R WCl . Cl=R «Cl
U= ,Cly u =Ru
S Npy 78°C CI'Q .
cl ®  R=COEt ] R
s 15 H
%z 19

R

resonances in 16 were still sharp at —30 °C, whereas the same
resonances in 15 were significantly broadened as a result of chemical
exchange (Figure S9). In contrast to 16, a ROESY spectrum of
ruthenacycle 17 taken at —60 °C showed evidence of chemical
exchange, albeit with a relatively low rate constant (Table 1).
Although it is difficult to extract definitive conclusions from such
dramatic changes in methylene exchange rates, particularly at the low
temperatures under investigation, the extent to which the NHC can
affect even the simplest of metathesis reactions is still note-
worthy. Furthermore, the low rate of exchange in 16, even at
relatively high temperatures, suggests that similar complexes
may be viable targets for crystallographic characterization of
metathesis-relevant ruthenacycles.

Having established the feasibility of forming simple ruthena-
cycles with 9, 13, and 14, we turned to the preparation and chara-
cterization of ruthenacycles relevant to RCM. With an approach
similar to that used by the Piers’ laboratory, 9, 13, and 14 were
reacted with cyclopentene 18 (produced by RCM of 1) in the
presence of 1 equiv of ethylene (Scheme 6)."*>'” Unfortunately,
under a variety of conditions, 13 and 14 reacted to give the
ethylene-only ruthenacycles 16 and 17, respectively. Such an
observation is consistent with the known preference of catalysts
containing these NHCs to propagate as methylidene species in
catalytic reactions (e.g, in ethenolysis),** but it is nevertheless
surprising that no other ruthenacycles were observed.”* In contrast
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to 13 and 14, when 9 was reacted with 18 and 1 equiv of ethylene
at —78 °C, substituted metallacyle 19 was observed, albeit in very
low yield (ca.29%). In all cases, a significant amount of the parent
ethylene-only metallacycle 15 was also formed (ca. 21% yield).
Despite the low yield of 19, we were able to characterize the
metallacycle resonances fully by '"H—"H COSY and found them
to be consistent with previous literature reports (see below).">'”
To our surprise, ROESY spectra taken at a variety of different
temperatures (—40 to —70 °C) and mixing times (up to 600 ms)
displayed no evidence of chemical exchange apart from the
methylene exchange in 15. This is in contrast to compound 3,
which exhibits a number of dynamic processes, including ex-
change between &' and a” resonances and exchange between 3
and free cyclopentene (Scheme 7).

When the mixture of 15 and 19 was warmed to —40 °C for 2 h,
a new peak appeared in the metallacycle region of the NMR
spectrum. At first, we believed this peak to be the result of ring
opening of 19 followed by trapping with ethylene, a process that
was observed by Piers (e.g., to form 4)."” However, several lines
of evidence suggest that an entirely different intermediate is
formed under our conditions. First, Piers and co-workers found
that ring-opened ruthenacycle 4 was formed only at low tem-
peratures (below —60 °C), whereas the formation of the observed
structure occurred only at higher temperatures (—40 °C).

Scheme 7. Unobserved Exchange Processes in 19

Mes—N N=-"Bu Mes—N N="Bu

Second and more importantly, substitution at a’ should create
a set of diastereotopic -H resonances. Thus, if a structure
analogous to 4 were correct, there would have been two separate
resonances, which were not observed. In order to characterize
this new species and confirm the identity of 19, compound 9 was
reacted with 18 in the presence of '>C-labeled ethylene (Figure 3
top). The resulting NMR spectrum taken at —60 °C (Figure 3
bottom) showed that only one of the three 5-H resonances
(at —2.4 ppm) was split by virtue of being bound to a *C-
enriched nucleus.”® This corresponds to the ethylene-only
ruthenacycle 1S. The other two 5-H resonances remained as
singlets, indicating that these protons must have come from
substrate 18. These data rule out the presence of a ruthenacycle
resulting from ring opening of 19 and trapping of the resulting
alkylidene with ethylene. The extremely low concentration of the
unknown ruthenacycle and its relatively short T, prevented us
from establishing its structure by heteronuclear 2D NMR spec-
troscopy (e.g, HSQC, HMBC).>® However, we were able to
obtain a 'H—"H COSY spectrum at —90 °C (Figure 4) that
provided some insight into the structure of the unknown species.

The COSY data confirmed our original assignments of 15 and
19 and also showed cross-peaks for the unknown species that
suggest the following: (1) The S carbon of the ruthenacycle is
substituted with an alkyl group, as shown by a small correlation
observed in the alkyl region. (2) The 3-H is adjacent to a "*C-
enriched nucleus, as shown by a correlation in the a/a’-H
ruthenacycle region that was split into a doublet. (3) The «
carbon of the ruthenacycle is also alkyl-substituted, as shown by a
downfield correlation consistent with those for other a-substi-
tuted ruthenacycles. On the basis of these results, we propose
structure 22 in Scheme 8 for the unknown ruthenacycle. If this
structure is correct, it would be the first observation of a 3-sub-
stituted ruthenacycle that is not part of a ring system. However,
as a caveat, it must be noted that it is currently not clear what role
(if any) a structure such as 22 plays in either productive or
nonproductive metathesis. The formation of 22 would require
ring openin% of 19 to generate an alkylidene followed by trapping
with diene "*C-1 instead of ethylene (Scheme 8). This would
obviously require that diene 'C-1 be present in solution.
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Figure 3. (top) Generation of substituted ruthenacycles using 13C-ethylene and (bottom) NMR spectrum showing resonances for '*C-15 (—2.2 and

—2.5 ppm), *C-19 (—1.65 ppm), and *C-22 (—1.1 ppm).
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Figure 4. 'H-"H COSY spectrum of the ruthenacycle region for the 13C labeled ruthenacycle mixture at —90 °C in CD,Cl,. The assignments of A and
B in "*C-15 are arbitrary since there was not enough spectroscopic data to distinguish the two. The X, Y, and Z assignments were confirmed by

2D NOESY.

Scheme 8. Proposed Formation of Diene 1 and Ruthenacycle 22 from 19 and Ethylene (Dashed Lines Represent a Possible

Process That Was Not Observed™’)

Mes—N N-"Bu

I\
Te
Ru

13¢5

A heteronuclear single-quantum correlation (HSQC) and BC
NMR spectrum confirmed the presence of >C-1, but we were
unable to establish its concentration reliably because of the overlap
of several species in the same region of the 1D 'H NMR
spectrum (see the Supporting Information).27 However, reaction
of 9 with diene 1 in place of 18 yielded the same three ruthenacycle
resonances, although the relative concentrations of the various

16281

ruthenacycles were largely unchanged relative to previous ex-
periments. The structure shown for 22 is consistent with all of
our spectroscopic data, but unfortunately, its low concentration
prevented us from establishing its identity with full confidence.”®
Furthermore, we were also unable to find conditions where 22 did
not form, a fact that tremendously complicated our kinetic inves-
tigations. Nevertheless, we decided to probe the transformation
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Scheme 9. Kinetic Model for the Conversion of 19 to 15 and
22 in the Presence of Excess Ethylene
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from 19 to 15 in the hope of providing some insight into the effect of
the NHC on more advanced ruthenacycle kinetics.

Exposure of an isotopically labeled mixture of "*C-19 and '*C-
22 to an excess of ethylene (1 atm) at —60 °C for 6 h revealed
only a marginal decrease in the intensity of the corresponding
resonances. This result is in contrast to what the Piers’ laboratory
observed with 3, which was consumed within hours under similar
conditions. Perhaps more surprising was the low rate of reaction
of ruthenacycle "*C-15, which showed almost no significant
washing out of the *C label. Again, this is in contrast to catalyst 2
formed from "*C-labeled ethylene, where the isotopic label was
completely washed out within hours, albeit at the higher tem-
perature of —50 °C.* Ina separate experiment, increasing the
temperature of the reaction of 19 with excess ethylene to form 15
at —40 °C resulted in clean first-order kinetics that could be
monitored on a more manageable time frame using NMR
spectroscopy. However, a closer inspection of the kinetic data
revealed a second first-order process that appeared to be
occurring at short reaction times (Figure $17). We believe that
this additional process was the result of an equilibrium between
19 and 22 at early reaction times. Indeed, a time-course plot of
the concentrations of 15, 19, and 22 revealed a slight increase in
the concentration of 22 followed by a leveling off at later reaction
times (Figure S18). This result confirmed that there are two
processes leading to the decrease in the concentration of 19: (1)
the direct reaction to form 15 with release of 18 and (2) an
apparent equilibrium reaction to form 22 followed by conversion
of 22 into 15 (Scheme 9).>” An analogous sequence of reactions
was observed by Piers under certain conditions, albeit with a
different intermediate (4). Modeling of the simplified series of
reactions shown in Scheme 9 using COPASI* allowed the kinetic
parameters ky, k,, k_, and k; to be determined (Table S5).*"*
Comparison of the k; values obtained for 19 and 3'” revealed a
stark contrast between the reactivities of the two compounds.
For example, at —60 °C, the k; value obtained for 3was 7 x 10 *s,
whereas the value for 19 (7.3 x 107 ° s ') was 2 orders of
magnitude smaller. An Eyring plot using the k; values for 19 over
a20 °C temperature range yielded a value of 19.0 % 0.5 kcal mol "
for AH", which is ca. 3 kcal mol ! higher than the corresponding

value for 3 (16.2 kcal mol ™ "). The AS" values obtained for the
two systems were roughly the same (8.5 2= 2.3 calmol ' K™ ' for
19 vs 3.6 cal mol ' K~ for 3).

Although we urge caution in extrapolating these results to
behavior under catalytic conditions and normal operating tem-
peratures, this fundamental transformation in the RCM cycle is
clearly much more difficult for 19 than for 3, which may partially
explain the lower activities typically associated with complexes of
this type. Furthermore, since loss of the cyclopentene product
from 19 or 3 appears to be the rate-determining step in the ring-
closing direction, we speculate that the relative increase in the
height of this barrier for 19 may allow for more degenerate
turnovers to occur before a productive turnover can be com-
pleted."® This would account for the observation that catalysts
containing structurally similar NHCs select for degenerate turn-
overs during RCM.® Finally, the observation of **C-1 in solution
suggests that ring opening of the cyclopentene RCM product is
facile and perhaps that the kinetic preference for ring closing over
ring opening is catalyst-dependent.>®

Il CONCLUSION

In summary, several new phosphonium alkylidene ruthenium
metathesis catalysts incorporating different NHCs have been
prepared and used to generate ruthenacycles with the goal of
rationalizing degenerate metathesis selectivity. In the case of
ethylene-only ruthenacycles, the rate of exchange of @ and f8
methylene protons was found to vary considerably across the
series of catalysts. With traditional NHCs, the exchange rate was
largely consistent with previously reported complexes, while
incorporation of a CAAC with DEP as the nitrogen substituent
resulted in severe attenuation of the exchange rate to the point
where exchange was not observed until the temperature was
increased to —30 °C. Because of this relatively low exchange rate,
one can envision that crystallographic characterization of this
complex (or analogous ones) may be possible. However, subtle
changes in ligand architecture can alter the ruthenacycle ex-
change rate, and by extension, the metathesis selectivity and
activity. This was demonstrated by the remarkable increase in
exchange rate upon substituting DEP with DIPP as the nitrogen
substituent on the CAAC ligand. These results demonstrate the
significant changes that can occur in even the simplest of
metathesis reactions as a result of changes in the NHC structure.

Our attempts to form RCM-relevant ruthenacycles resulted in
the formation of a previously unobserved ruthenacycle that we
believe to be the first acyclic S-alkyl-substituted ruthenacycle.
Such a structure is consistent with all of our spectroscopic data,
but its low concentration placed a definitive identification
currently out of our technical reach. Nevertheless, this structure
plays an important role in ruthenacycle kinetics under an atmosphere
of excess ethylene. Our kinetic investigations revealed that the
rate-limiting dissociation of the cyclopentene RCM product from
the ruthenium center has a much higher energy barrier in com-
parison with previously reported complexes. Since the majority
of the steps along the RCM pathway appear to be reversible, this
higher barrier may allow more degenerate turnovers to occur at
the expense of productive ones. At the very least, it provides an
additional rationale for the generally inferior performance of
metathesis catalysts containing N-aryl/N-alky]l NHCs in com-
parison with those possessing N-aryl/N-aryl NHCs.

Finally, these studies further illuminate the subtle role that
the NHC plays in ruthenium-catalyzed olefin metathesis, thus
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validating efforts to fine-tune ruthenium catalysts for specific
applications via manipulation of this ligand.

B ASSOCIATED CONTENT

© Supporting Information. Detailed experimental proce-
dures, NMR spectra, and kinetic analysis. This material is
available free of charge via the Internet at http://pubs.acs.org.
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